Heterodimerization of Kinesin-2 KIF3AB Modulates Entry into the Processive Run.

نویسندگان

  • Clayton D Albracht
  • Stephanie Guzik-Lendrum
  • Ivan Rayment
  • Susan P Gilbert
چکیده

Mammalian KIF3AB is an N-terminal processive kinesin-2 that is best known for its roles in intracellular transport. There has been significant interest in KIF3AB to define the key principles that underlie its processivity but also to define the mechanistic basis of its sensitivity to force. In this study, the kinetics for entry into the processive run were quantified. The results show for KIF3AB that the kinetics of microtubule association at 7 μm-1 s-1 is less than the rates observed for KIF3AA at 13 μm-1 s-1 or KIF3BB at 11.9 μm-1 s-1 ADP release after microtubule association for KIF3AB is 33 s-1 and is significantly slower than ADP release from homodimeric KIF3AA and KIF3BB, which reach 80-90 s-1 To explore the interhead communication implied by the rate differences at these first steps, we compared the kinetics of KIF3AB microtubule association followed by ADP release with the kinetics for mixtures of KIF3AA plus KIF3BB. Surprisingly, the kinetics of KIF3AB are not equivalent to any of the mixtures of KIF3AA + KIF3BB. In fact, the transients for each of the mixtures overlay the transients for KIF3AA and KIF3BB. These results reveal that intermolecular communication within the KIF3AB heterodimer modulates entry into the processive run, and the results suggest that it is the high rate of microtubule association that drives rebinding to the microtubule after force-dependent motor detachment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinesin-2 KIF3AC and KIF3AB Can Drive Long-Range Transport along Microtubules.

Mammalian KIF3AC is classified as a heterotrimeric kinesin-2 that is best known for organelle transport in neurons, yet in vitro studies to characterize its single molecule behavior are lacking. The results presented show that a KIF3AC motor that includes the native helix α7 sequence for coiled-coil formation is highly processive with run lengths of ∼1.23 μm and matching those exhibited by conv...

متن کامل

Kinesin-2 KIF3AB exhibits novel ATPase characteristics.

KIF3AB is an N-terminal processive kinesin-2 family member best known for its role in intraflagellar transport. There has been significant interest in KIF3AB in defining the key principles that underlie the processivity of KIF3AB in comparison with homodimeric processive kinesins. To define the ATPase mechanism and coordination of KIF3A and KIF3B stepping, a presteady-state kinetic analysis was...

متن کامل

Fast or Slow, Either Head Can Start the Processive Run of Kinesin-2 KIF3AC.

Mammalian KIF3AC contains two distinct motor polypeptides and is best known for its role in organelle transport in neurons. Our recent studies showed that KIF3AC is as processive as conventional kinesin-1, suggesting that their ATPase mechanochemistry may be similar. However, the presence of two different motor polypeptides in KIF3AC implies that there must be a cellular advantage for the KIF3A...

متن کامل

Intraflagellar transport velocity is governed by the number of active KIF17 and KIF3AB motors and their motility properties under load.

Homodimeric KIF17 and heterotrimeric KIF3AB are processive, kinesin-2 family motors that act jointly to carry out anterograde intraflagellar transport (IFT), ferrying cargo along microtubules (MTs) toward the tips of cilia. How IFT trains attain speeds that exceed the unloaded rate of the slower, KIF3AB motor remains unknown. By characterizing the motility properties of kinesin-2 motors as a fu...

متن کامل

Regulation of a heterodimeric kinesin-2 through an unprocessive motor domain that is turned processive by its partner.

Cilia are microtubule-based protrusions of the plasma membrane found on most eukaryotic cells. Their assembly is mediated through the conserved intraflagellar transport mechanism. One class of motor proteins involved in intraflagellar transport, kinesin-2, is unique among kinesin motors in that some of its members are composed of two distinct polypeptides. However, the biological reason for het...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 291 44  شماره 

صفحات  -

تاریخ انتشار 2016